郑州鹰眼智客-鹰眼大数据官网

数据化思考,忽略了趋势,过去的价值一文不值

作者:数据化思考,忽略了趋势,过去的价值一文不值来源:原创网址:http://www.yydashuju.com/

我们通常认为,经验应该是越多越好。一个有经验的人总是更能够在很多事情上做出正确的判断,因为积累使然。但事实上,我们发现,有时候经验越多,似乎越容易让人犯一些低级的错误。这就好像,你会发觉往往天天研究彩票和股票的人总是发不了财,而往往是一个菜鸟莫名其妙的就中了大奖和买了一只牛股。

为什么经验时候会使人犯低级错误呢?在这里,我们应该将其分成两种情况来看到:一种是信息不对称;另一种是逻辑错误。

当我们讨论信息的不对称时,首先要讲的就是经验。经验是对过去的度量,但不是所有经验信息的质量都很好。在经验的数据库里,肯定是有一些信息是正确的,有一些是错误的。当经验中混有很多噪音干扰时,我们会跟随错误的经验做出判断,此时,我们就会发现自己变笨了。

比如,在使用没有评估过的经验时,你用A方案获得了成功,用B方案却失败了,而且在评估的过程中也不是单纯的0或1,而是用0~1的范围来度量的。说到这个,就要提到数据分析师了。一般而言,数据分析师对于信息是很有洁癖的,也就是在对于经验的累积上,他们对质量把控得十分严格,如对于数据信息的排序、分析可靠的信息源进行多次使用、了解信息的出处和知道信息的提供者等。根据这些,数据分析师在它们的辅助下做出了决定。这意味着,你所有的信息来源都需要有正确的途径和渠道,不然,这个决策也会出现偏差。

除此之外,还有一个因素导致经验使人变笨,那就是在分析时忽略了趋势,这个道理可以用赛马的故事来举证。

在香港,你经常会发现拿着一大堆材料的人会分析马匹的数据。比如,有人会根据一匹马进行1200米跑的时间,来计算它未来可能跑完全程所需要的时间。但我们发现,还是有很多人因算错导致赌马失败。为什么呢?因为历史数据和我们今天面对的情况中出现了一些假象。香港大多数赌马的人,他们最终收集到的数据都是受到影响的,而不是经过清洗的,当然是不准确的。每一个赌马的人都在看过去的数据——马会会给每一个赌马者提供前三场赛马的数据,大家只会关注这个结果,而不会去关注赛马当天发生了什么。如果是我,

则会去回看录像,就可能发现其他的情况。比如,如果这匹马本来想发力,但前面有马匹挡住了它,它才被扣除了两秒钟;或者骑师扬鞭,鞭子掉了,扣除5秒钟;再或者有些马发脾气偏离跑道,也要扣除秒数。当排除所有意外算出的时间,就是干净的、没有影响因素的真正经验了。这时候,我们得到的第1~3名的数据和最终比赛结束公布出来的第1~3名的数据就会不一样。

除此之外,还要观察有关赛马成长的趋势问题。事实上,在每一场赛马里都会出现很多意外,如果这些意外都不出现,也会直接导致结果的不同。因为每匹马幼年和成年的状态是完全不同的,因此它的数据价值评估也是不一样的。一匹马3~4岁等同于我们人类18~25岁,体能上会出现非常大的变化;又或者,年幼的马匹对于骑士的体重非常敏感,多1~2磅就会有非常大的影响,但长到5岁后,负重对其的影响则会慢慢降低,这就是硬趋势。即便有很多过往经验的数据都不能很好地匹配今天你要做的事情时,意味着经验需要将数据进行清洗——把当天的影响因素都找出来,并还原,这时候得到的数据才是正确的经验。

结论就是,经验使人变笨的原因在于你之前的经验本身就存在误差,即数据源本身就存在问题,而这种误差一般人看不出来。因此,在过去的经验积累本身就有问题的情况下,根据经验得出的结论自然会使人犯低级错误。

你永远不要假定这个世界是真空的,所以你还需要多多观察频繁出现的新数据。当有新的数据出现时,以往的经验就需要重新做评估了。



鹰眼智客,十一年大品牌,值得信赖!欢迎咨询了解:15515971105   微信:yyxgzn5   支持免费试用!!